Structural Basis for the Methylation State-Specific Recognition of Histone H4-K20 by 53BP1 and Crb2 in DNA Repair
نویسندگان
چکیده
Histone lysine methylation has been linked to the recruitment of mammalian DNA repair factor 53BP1 and putative fission yeast homolog Crb2 to DNA double-strand breaks (DSBs), but how histone recognition is achieved has not been established. Here we demonstrate that this link occurs through direct binding of 53BP1 and Crb2 to histone H4. Using X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, we show that, despite low amino acid sequence conservation, both 53BP1 and Crb2 contain tandem tudor domains that interact with histone H4 specifically dimethylated at Lys20 (H4-K20me2). The structure of 53BP1/H4-K20me2 complex uncovers a unique five-residue 53BP1 binding cage, remarkably conserved in the structure of Crb2, that best accommodates a dimethyllysine but excludes a trimethyllysine, thus explaining the methylation state-specific recognition of H4-K20. This study reveals an evolutionarily conserved molecular mechanism of targeting DNA repair proteins to DSBs by direct recognition of H4-K20me2.
منابع مشابه
Methylation of Histone H4 Lysine 20 Controls Recruitment of Crb2 to Sites of DNA Damage
Histone lysine methylation is a key regulator of gene expression and heterochromatin function, but little is known as to how this modification impinges on other chromatin activities. Here we demonstrate that a previously uncharacterized SET domain protein, Set9, is responsible for H4-K20 methylation in the fission yeast Schizosaccharomyces pombe. Surprisingly, H4-K20 methylation does not have a...
متن کاملHistone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks.
Cellular responses to DNA damage involve the relocalization of checkpoint proteins to DNA double-strand breaks (DSBs). The fission yeast checkpoint mediator protein Crb2, a homolog of mammalian 53BP1, forms ionizing radiation-induced nuclear foci (IRIF). The IRIF formation by Crb2 requires histone H2A C-terminal phosphorylation and H4-K20 methylation. However, the relevance of Crb2 relocalizati...
متن کاملCooperative control of Crb2 by ATM family and Cdc2 kinases is essential for the DNA damage checkpoint in fission yeast.
The cellular responses to double-stranded breaks (DSBs) typically involve the extensive accumulation of checkpoint proteins in chromatin surrounding the damaged DNA. One well-characterized example involves the checkpoint protein Crb2 in the fission yeast Schizosaccharomyces pombe. The accumulation of Crb2 at DSBs requires the C-terminal phosphorylation of histone H2A (known as gamma-H2A) by ATM...
متن کاملDi-methyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage.
Histone lysine methylation is an important chromatin modification that can be catalyzed to a mono-, di-, or tri-methyl state. An ongoing challenge is to decipher how these different methyllysine histone marks can mediate distinct aspects of chromatin function. The fission yeast checkpoint protein Crb2 is rapidly targeted to sites of DNA damage after genomic insult, and this recruitment requires...
متن کاملHistone H4 deacetylation facilitates 53BP1 DNA damage signaling and double-strand break repair.
53BP1 and other DNA damage response (DDR) proteins form foci at double-strand breaks (DSBs) which promote their repair by nonhomologous end joining (NHEJ). Focal accumulation of 53BP1 depends on the specific interaction of its tandem Tudor domain with dimethylated lysine 20 in histone H4 (H4K20me2). How 53BP1 foci dynamics are regulated is unclear since H4K20me2 is highly abundant, established ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 127 شماره
صفحات -
تاریخ انتشار 2006